信使RNA介紹
解析:
信使RNA的發現
基本概念
轉錄是在原核和真核細胞中以DNA為模板合成RNA的過程。
在原核和真核生物中,轉錄過程是相似的。包括DNA變性,RNA聚合酶結合在單鏈DNA上以5′→3′方向合成RNA分子。雙鏈中只有壹條鏈作為轉錄模板,合成單鏈RNA分子。啟動子和終止子序列決定轉錄的起始和終止。
在E.coli中RNA多聚酶轉錄各種RNA(mRNA,tRNA和rRNA)。在真核細胞中有三類不同的RNA多聚酶,它們的功能不同。RNA pol Ⅰ轉錄4種rRNA中的3種;RNA pol Ⅱ轉錄mRNA和壹些snRNA;RNAⅢ轉錄第四種rRNA,tRNA以及其余的snRNA。
3種真核生物的RNA pol,不像E.coli RNA pol,沒有壹個直接地和啟動子區結合,而是通過轉錄起始因子的介導來起始RNA的合成。對於每壹種RNA多聚酶來說,轉錄因子是特異的,它可以識別啟動子的特殊序列。
蛋白質編碼基因的啟動子位於轉錄起始位點的上遊,由不同組合的啟動原件所構成。特異的轉錄因子和調節因子結合在這些原件上,促進RNA pol Ⅱ轉錄起始。增強子離啟動子較遠,它可被調節因子識別結合,具有促進基因轉錄的功能。
由RNA pol Ⅲ轉錄的啟動子,位於下遊,在其基因編碼序列內部。這種啟動子,根據所轉錄的RNA的種類,由不同的功能區組合而構成。轉錄因子識別這些功能區,促進RNA聚合酶轉錄起始。
18S,5.8S和28S rRNA作為壹個轉錄單位壹道轉錄,產生前體RNA分子。大部分真核生物的18S,5-8S和28S rRNA都是以串聯重復排列,每個重復單位被不轉錄的間隔序列(nontranscribed specer,NTs)所分隔。轉錄單位的啟動子位於NTS中,其功能是和特異的轉錄因子相結合,促進RNA pol Ⅰ的轉錄起始。
從孟德爾定律問世以後,人們就知道了生物的各種性狀是由基因控制的。壹基因壹酶學說的建立進壹步地明確了基因是以酶的形式通過控制生化反應鏈來控制的。酶或蛋白和基因又是什麽樣的關系呢?也就是說遺傳信息怎樣傳遞,怎樣表達成性狀呢?就在Watson和Crick建立DNA雙螺旋模型後的第三年,1957年Crick提出了中心法測(central dogma),指出了遺傳信息的傳遞方向:
DNA → RNA→蛋白質
DNA RNA → 蛋白質
(1970年H.Temin和D.Baltimore發現了反轉錄酶後,Crick對中心法測又作了部分修改:
也就是說由DNA通過轉錄將遺傳信息傳遞給RNA,RNA通過翻譯把信息傳遞給蛋白(圖12-1)。通過這種單向的傳遞,遺傳信息通過蛋白質的不同形式,如酶,結構蛋白,運載蛋白,調節蛋白等表達成壹種性狀。
第壹節 信使的發現
儲存在DNA分子中的這種遺傳信息能在復制中產生更多的拷貝,並翻譯成蛋白質。DNA的功能構成了信息的流動,遺傳信息如何轉變成蛋白質呢?轉錄就是其中的重要的壹環。基因表達時以DNA的壹條鏈為模板合成RNA,這壹過程就是轉錄(transcription)。催化合成RNA的酶叫做RNA聚合酶(RNA polymerase)。RNA和DNA結構相似,所不同之處在於:(1)RNA壹般以單鏈形式存在;(2)RNA中的核糖其C′-2不脫氧的;(3)尿苷(U)取代了DNA中的胸苷。細胞中的RNA分成三種:mRNA(信使RNA),tRNA(轉運RNA)和rRNA(核糖體RNA)。它們的功能各不相同。mRNA是合成蛋白質的模板,tRNA是轉運特異氨基酸的運載工具,rRNA是合成蛋白質的裝置。mRNA的堿基序列,決定著蛋白質裝配時氨基酸的序列。
1955年Brachet用洋蔥根尖和變形蟲進行了實驗;若加入RNA酶降解細胞中的RNA,則蛋白質合成就停止,若再加入從酵母中提取的RNA,則又可以重新合成壹些蛋白質,這就表明,蛋白質的合成是依賴於RNA。
同年Goldstein和Plaut用同位素標記變形蟲(Amoeba proteus)RNA前體,發現標記的RNA都在核內,表明RNA是在核內合成的。在標記追蹤(pulse-chase)實驗中,用短脈沖標記RNA前體,然後將細胞核轉移到未標記的變形蟲中。經過壹段時間發現被標記的RNA分子已在細胞質中,這就表明RNA在核中合成,然後轉移到細胞質內,而蛋白質就在細胞質中合成,因此RNA就成為在DNA和蛋白質之間傳遞信息的信使的最佳候選者。
1956年Elliot Volkin和 Lawrence Astrachan作了壹項很有意思的觀察:當E.coli被T2感染,迅速停止了RNA的合成,但噬菌的RNA卻開始迅速合成。用同位素脈沖壹追蹤標記表明噬菌的RNA在很短的時間內就進行合成,但很快又消失了,表明RNA的半衰期是很短的。由於這種新合成的RNA的堿基比和T2的DNA堿基比相似,而和細菌的堿基比不同,所以可以確定新合成的RNA是T2的RNA。由於T2感染細菌時註入的是DNA,而在細胞裏合成的是RNA,可見DNA是合成RNA的模板。最令人信服的證據來自DNA-RNA的雜交實驗。Hall.B.D和Spiegeman,S,將T2噬菌體感染E.coli後立即產生的RNA分離出來,分別與T2和E.coli的DNA進行分子雜交,結果發現這種RNA只能和T2的DNA雜交形成“雜種”鏈,而不能和E.coli的DNA進行雜交。表明T2產生的這種RNA(即mRNA)至少和T2的DNA中的壹條鏈是互補的。
Brenner,s. Jacob,F.和Meselson(1961)進行了壹系列的的實驗(圖12-2),他們將E.coli培養在15N/13C的培養基中,因此合成的RNA和蛋白都被“重”同位素所標記。也就是說凡是“重”的核糖體,RNA和蛋白都是細菌的,然後用T2感染E.coli,細菌的RNA停止合成,而開始合成T2的RNA此時用普通的“輕”培養基(14N/12C),但分別以32P來標記新合成的T2 RNA,以35S標記新合成的T2蛋白,因此任何重新合成的核糖體,RNA,及蛋白都是“輕”的但帶但有放射性同位素。經培養壹段時間後破碎細胞,加入過量的輕的核糖體作對照,進行密度梯度離心,結果“輕”的核糖體上不具有放射性,“重”的核糖體上具有32P和35S,表明(1)T2未合成核糖體,“輕”核糖體卻是後加放的。(2)T2翻譯時是借用了細菌原來合成的核糖體,所以核糖體並無特異性,核糖體上結合的mRNA,其序列的特異性才是指導合成蛋白質的遺傳信息,從而提出了mRNA作為“信使”的證據。因此他們將這種能把遺傳信息從DNA傳遞到蛋白質上的物質稱為“信使”。他們預言(1)這種“信使”應是壹個多核苷酸;(2)②其平均分子量不小於5?105(假定密碼比是3),足以攜帶壹個基因的遺傳信息;(3)它們至少是暫時連在核糖體上;(4)其堿基組成反映了DNA的序列;(5)它們能高速更新。Volkin和Astrachan發現高速更新的RNA似乎完全符合以上條件。Jacob和Monod將它定名為信使RNA(Messenger RNA)或mRNA。