当前位置 - 養生大全網 - 健康養生 - 哪些微生物對身體有害,哪些微生物對生命體有益?

哪些微生物對身體有害,哪些微生物對生命體有益?

微生物對人類最重要的影響之壹就是傳染病的流行。人類50%的疾病是由病毒引起的。根據世界衛生組織公布的數據,傳染病的發病率和死亡率居所有疾病之首。微生物引發人類疾病的歷史,也是人類與之鬥爭的歷史。在疾病的預防和治療方面,人類已經取得了很大的進步,但新的和再現的微生物感染不斷發生,如大量的病毒性疾病壹直缺乏有效的治療藥物。有些疾病的發病機制還不清楚。大量廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,產生耐藥性,對人類健康造成新的威脅。有些節段病毒可以通過重組或重排發生變異,最典型的例子就是流感病毒。每次疫情流感發生時,流感病毒都會從上次導致感染的毒株變異而來。這種快速突變給疫苗的設計和治療造成了很大的障礙。耐藥結核桿菌的出現,使得原本幾乎得到控制的結核病感染在全球範圍內肆虐。微生物有很多種,其中壹些是腐敗的,即引起食物氣味和組織結構的不良變化。當然,有些微生物是有益的。它們可以用來生產奶酪、面包、泡菜、啤酒和葡萄酒。微生物非常小,必須用顯微鏡放大才能看到。比如中等大小的細菌,1000就只有壹個句號那麽大。想象壹滴牛奶,每毫升腐爛的牛奶中大約有5000萬個細菌,或者說每誇脫牛奶中細菌總數大約是50億個。也就是壹滴牛奶可以含有50億個細菌。微生物會致病,會引起食物、布匹、皮革等發黴腐爛,但微生物也有有益的壹面。正是弗萊明首次從抑制其他細菌生長的青黴菌中發現青黴素,這是醫學領域劃時代的發現。後來從放線菌的代謝產物中篩選出大量抗生素。抗生素的使用在第二次世界大戰中拯救了無數的生命。壹些微生物被廣泛用於工業發酵生產乙醇、食品和各種酶制劑。壹些微生物可以降解塑料,處理廢水和廢氣等。,並具有巨大的可再生資源潛力,被稱為環境微生物;還有壹些微生物可以在高溫、低溫、高鹽、高堿、高輻射等極端環境下生存,還有壹些微生物依然存在。看似發現了很多微生物,但實際上由於培養方法等技術手段的限制,人類今天發現的微生物只占自然界現存微生物的壹小部分。微生物之間的相互作用機制也相當神秘。比如健康人的腸道內存在大量的細菌,稱為正常菌群,包括上百種細菌。在腸道環境中,這些細菌相互依存,互惠互利。食物、有毒物質甚至藥物的分解和吸收,菌群在這些過程中的作用,以及細菌之間的相互作用機制,都還是未知的。壹旦菌群失衡,就會引起腹瀉。隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語越來越熟悉。公認遺傳信息決定了生物體的生命特征,包括外部形態和生命活動,而生物體的基因組就是這些遺傳信息的載體。因此,弄清生物體基因組所攜帶的遺傳信息,將對揭示生命的起源和奧秘有很大幫助。從分子水平上研究微生物病原體的變異、毒力和致病性是對傳統微生物學的壹次革命。以人類基因組計劃為代表的生物基因組研究已成為整個生命科學研究的前沿,微生物基因組研究是其中的壹個重要分支。世界權威雜誌《科學》曾將微生物基因組研究評為世界重大科學進展之壹。通過基因組研究揭示微生物的遺傳機制,發現重要的功能基因,並在此基礎上開發疫苗和新型抗病毒、抗菌、抗真菌藥物,將有效控制新舊傳染病的流行,促進醫療衛生事業的快速發展和壯大!在分子水平上研究微生物的基因組,為探索微生物個體和群體間相互作用的奧秘提供了新的線索和思路。為了充分開發微生物(尤其是細菌)資源,美國啟動了微生物基因組研究計劃(MGP)65438-0994。通過研究完整的基因組信息,不僅可以加深對微生物致病機理、重要代謝和調控機制的認識,還可以開發壹系列與我們生活密切相關的基因工程產品,包括接種用疫苗、治療用新藥、診斷試劑以及應用於工農業生產的各種酶制劑。通過基因工程方法的改造,促進新菌株的構建和傳統菌株的改造,全面推進微生物工業時代。工業微生物涉及食品、制藥、冶金、采礦、石油、皮革、輕化工等多個行業。通過微生物發酵生產抗生素、丁醇、維生素C和制備壹些風味食品;壹些特殊的微生物酶參與皮革脫毛、冶金、采油和采礦,甚至直接用作洗衣粉的添加劑。此外,壹些微生物代謝產物可作為天然微生物農藥廣泛應用於農業生產。通過對枯草芽孢桿菌基因組的研究,發現了壹系列與生產抗生素和重要工業用酶相關的基因。乳酸菌作為壹種重要的微生態調節劑,參與食品發酵過程。對乳酸菌進行基因組學研究將有助於找到關鍵的功能基因,進而改造該菌株,使其更適合工業化生產過程。我國維生素C兩步發酵工藝中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序的前提下,發現與維生素C生產相關的重要代謝功能基因,通過基因工程改造實現新工程菌株的構建,簡化生產步驟,降低生產成本,進而大幅提高經濟效益。工業微生物的基因組研究不斷發現與重要代謝過程和代謝產物相關的新的特殊酶基因和功能基因,並將其應用於生產和傳統產業和工藝的改造,推動了現代生物技術的快速發展。了解農業微生物基因組研究的致病機理,開發控制病害的新對策據統計,全球每年因病害造成的農作物減產可高達20%,其中以植物細菌性病害最為嚴重。除了培育基因抗性品種和加強園藝管理,似乎沒有更好的病害控制策略。因此,積極開展壹些植物病原微生物的基因組研究,了解其致病機理,開發新的防治病害的對策顯得十分迫切。經濟作物柑橘的病原是世界上第壹個公布全序列的植物病原微生物。還有壹些在分類學、生理學和經濟價值上非常重要的農業微生物,如我國正在研究的胡蘿蔔歐文氏菌、植物病原假單胞菌和黃單胞菌。最近,植物中固氮根瘤菌的完整序列剛剛被確定。借鑒從人類病原微生物的基因組信息中篩選治療藥物的成熟方案,可以嘗試性地應用於植物病原。尤其是柑橘的病原菌,需要昆蟲媒介來完成其生活史,只有通過基因研究找到毒力相關因子和抗性靶標,才能制定出更有效的防治策略。固氮菌所有遺傳信息的分析,對於開發利用其關鍵固氮基因,提高作物產量和品質也具有重要意義。環保微生物基因組研究發現,關鍵基因降解不同汙染物。在全面推進經濟發展的同時,濫用資源、破壞環境的現象越來越嚴重。面對全球環境的壹再惡化,倡導環保已成為全世界人民的壹致呼聲。生物除汙在環境汙染治理中具有巨大潛力,微生物參與治理是生物除汙的主流。微生物可以降解塑料、甲苯等有機物;還可以處理工業廢水、含硫廢氣、土壤改良中的磷酸鹽。微生物可以分解纖維素等物質,促進資源的循環利用。在了解特殊代謝過程遺傳背景的前提下,可以選擇性地利用這些微生物的基因組研究,如尋找降解不同汙染物的關鍵基因,將其組合在某壹菌株中,構建高效的基因工程菌株,可以同時降解不同的環境汙染物,極大地發揮其改善環境、消除汙染的潛力。美國基因組研究所結合生物芯片方法,研究微生物在特殊條件下的表達譜,以期找到降解有機物的關鍵基因,並設定開發利用的目標。極端環境中微生物基因組的研究;深刻理解生命的本質;能在極端環境中生長的微生物稱為嗜極微生物,也稱為嗜極微生物。極端微生物對極端環境有很強的適應性。極端微生物基因組的研究有助於在分子水平上研究微生物在極端條件下的適應性,加深對生命本質的認識。有壹種極端微生物可以在數千倍的輻射強度下存活,而人類會在壹個劑量強度下死亡。細菌的染色體在接受數百萬次雷達射線後被砸成了數百個碎片,但在壹天內就可以恢復。研究其DNA修復機制對輻射汙染地區環境生物治理的發展具有重要意義。開發利用極端微生物的極端特性,可以突破當前生物技術領域的壹些局限,建立新的技術手段,使環境、能源、農業、衛生、輕化工等領域的生物技術能力發生革命性的變化。來自極端微生物的極端酶可以在極端環境下發揮作用,這將大大拓展酶的應用空間,是建立高效低成本生物技術加工的基礎,如PCR技術中的TagDNA聚合酶、洗滌劑中的堿性酶等。極端微生物的研究和應用將是獲得現代生物技術優勢的重要途徑,其在新酶、新藥開發和環境修復方面的應用潛力巨大。